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ABSTRACT 24 

 On average, 2-meter temperature forecasts over North America for leads greater than about two 25 

weeks have generally low skill in operational dynamical models, largely because of the chaotic, 26 

unpredictable nature of daily weather. However, for a small subset of forecasts, more slowly 27 

evolving climate processes yield some predictable signal that may be anticipated in advance, 28 

occasioning so-called ‘forecasts of opportunity’. Prior research has demonstrated that for boreal 29 

winter, an empirical dynamical modelling technique called a linear inverse model (LIM), whose 30 

forecast skill is typically comparable to operational forecast models, can successfully identify 31 

forecasts of opportunity both for itself and for other dynamical models. In this study, we use a set 32 

of LIMs constructed from weekly-averaged tropical outgoing longwave radiation (OLR) and 33 

Northern Hemisphere streamfunction anomalies, obtained from the Japanese 55-year Reanalysis 34 

dataset, to examine how subseasonal North American 2-meter temperature potential 35 

predictability and forecasts of opportunity vary from boreal winter through summer. We show 36 

how LIM skill evolves during the three phases of the spring transition of the north Pacific jet - 37 

late winter, spring, and early summer - revealing clear differences in each phase and a distinct 38 

skill minimum in spring. We identify a subset of forecasts with markedly higher skill in all three 39 

phases, despite LIM temperature skill that is somewhat low on average. However, skill 40 

improvements are only statistically significant during winter and summer, again reflecting the 41 

spring subseasonal skill minimum. The spring skill minimum is consistent with theory and arises 42 

due to a minimum in the LIM’s forecast signal-to-noise ratio. 43 

 44 

1. Introduction  45 

Routinely producing skillful subseasonal (3-8 week lead) 2-meter temperature (2mT) and 46 

precipitation forecasts remains difficult for the current generation of dynamical subseasonal 47 

forecast models in all seasons (Pegion et al. 2019, de Andrade 2020). As a result, much attention 48 

has been given to identifying the smaller subset of subseasonal forecasts that are useful, by 49 

considering phenomena that impart memory, and therefore predictability, to the system – so-50 

called forecasts of opportunity (Albers and Newman 2019; Mariotti et al. 2020). These more 51 

skillful forecasts reflect periods of high signal-to-noise ratio, or when a predictable ‘signal’ 52 

overwhelms unpredictable ‘noise’ in the system evolution. Predictable signals in the extratropics 53 

can arise through many processes including tropical-extratropical teleconnections (Winkler et al 54 
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2001), stratosphere-troposphere interactions (Baldwin et al. 2003; Butler et al. 2019a; Domeison 55 

et al. 2020; Albers and Newman 2021a), and long-lasting soil moisture anomalies (Koster et al. 56 

2011). Which processes are most important for forecasts of opportunity is determined by forecast 57 

location, target variable, forecast lead-time, and time of year.  58 

A key source of subseasonal predictability in the Pacific-North American region is 59 

tropical diabatic heating (e.g., Newman et al. 2003). For example, elevated North American 60 

temperature skill follows certain phases of the Madden-Julian Oscillation (MJO, Madden and 61 

Julian 1971, Johnson et al. 2014; Vigaud et al. 2018) and the El Niño – Southern Oscillation 62 

(ENSO; Johnson et al. 2014; Wang and Robertson 2018). However, skill provided by the MJO 63 

and ENSO is not constant at all times of the year, in part because the nature of tropical 64 

convection evolves over the course of the annual cycle. Convection related to ENSO tends to 65 

weaken during spring, particularly following its mature winter phase, while the extratropical 66 

influence of tropical heating via teleconnections varies due to the annual cycle of the Pacific jet 67 

and waveguide (Newman and Sardeskhmukh 1998). In addition to tropical heating, stratospheric 68 

variability can affect North American temperatures during winter and early spring before the 69 

final stratospheric warming, with some stratospheric states being associated with elevated 70 

subseasonal temperature forecast skill (Gerber et al. 2012; Butler et al. 2019b; Domeison et al. 71 

2020). 72 

Perhaps as a result of these seasonally-varying phenomena, spring is a particularly 73 

difficult forecast period. In a recent study, Albers et al. (2021b) found that the ability of the 74 

European Centre for Medium Range Weather Forecasting Integrated Forecast System (IFS) to 75 

predict variations in the North Pacific jet decreases markedly between early and late spring. This 76 

decrease in subseasonal skill could be related to the strong invigoration of the north Pacific storm 77 

track that occurs during this time of year (Breeden et al. 2021), representing an increase in 78 

unpredictable synoptic variability. Another possibility is that models have difficulty modeling 79 

the smaller spatial scales of tropical heating that tend to increasingly dominate tropical 80 

variability as spring progresses into summer (Newman and Sardeshmukh 1998). It is perhaps not 81 

surprising then, that spring temperature predictability has not been extensively studied compared 82 

to winter and summer. In this study, we hypothesize that seasonal changes in both the jet and 83 

tropical heating correspond to a reduction in subseasonal temperature predictability during 84 

spring. 85 
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Prior analysis has demonstrated the utility of an empirical-dynamical linear inverse 86 

model (LIM; Penland and Sardeshmukh 1995; Sardeshmukh et al. 2000) to generate subseasonal 87 

forecasts and objectively identify forecasts of opportunity. During winter, a LIM can produce 88 

500-hPa geopotential height and mean sea level pressure forecasts with skill comparable to the 89 

National Centers for Environmental Prediction Climate Forecast System version 2 (CFSv2) and 90 

IFS for lead times of 3-6 weeks, while also identifying periods of elevated skill in its own 91 

forecasts and those of the CFSv2 and IFS (Albers and Newman 2019). A similar LIM produced 92 

subseasonal North Atlantic Oscillation (NAO) index forecasts with skill comparable to the IFS. 93 

In the latter LIM, NAO forecasts of opportunity were found to be due to SST-related heating 94 

anomalies and downward propagating stratospheric circulation anomalies (Albers and Newman 95 

2021a). LIM forecasts during spring, however, have not been investigated in the present 96 

literature, nor has 2mT been selected as a target variable.  97 

In this study, we employ a recently-introduced method for tracking the winter-to-summer 98 

evolution of the north Pacific jet, which we use to define the spring state of the jet on a flow-99 

dependent, rather than calendar day, basis (Breeden et al. 2021). This approach ensures that the 100 

substantial year-to-year variability in the seasonal cycle of the north Pacific jet is accounted for, 101 

and anomalies developing in similar mean states are correctly grouped together. Three LIMs, 102 

similar to those used in Winkler et al. 2001 and Newman et al. 2003, are subsequently developed 103 

to produce late winter, spring and early summer forecasts of North American 2mT. An optimal 104 

growth approach to identifying forecasts of opportunity is employed, which successfully 105 

identifies periods of elevated circulation and 2mT skill. Finally, we compare observed skill to 106 

that expected from theory, and compare the evolution of predictable signal and unpredictable 107 

noise during the three jet phases to better understand the observed skill evolution. 108 

 109 

2. Data and Methods  110 

This study uses gridded reanalysis data to construct separate LIMs for the winter, spring 111 

and summer phases of the spring transition.  112 

a. Data  113 

Daily mean 200-hPa zonal wind, 200-hPa (Ψ200) and 850-hPa (Ψ 0) streamfunction, 2-114 

meter temperature (2mT), and outgoing longwave radiation (OLR) were accessed from the 115 

Japanese Meteorological Agency 55-year Reanalysis dataset (JRA-55; Kobayashi et al. 2015) for 116 
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the years 1959-2018 and months of January - July. All variables are regridded to 2.5 x 2.5q 117 

horizontal resolution. For tracking the spring transition of the north Pacific jet (described in 118 

Section 2b), we use 200-hPa zonal wind values for January – July, with only the 60-year January 119 

– July mean removed so that the seasonal cycle is retained, following the method of Breeden et 120 

al. (2021). Conversely, anomalies used in the LIM (Section 2c) were calculated by removing the 121 

60-year daily climatology, and then applying a 7-day running mean to isolate weekly variability 122 

and minimize high-frequency, synoptic variations. Such averaging is consistent with the 123 

assumptions made by the modeling framework described below (Newman et al. 2003; Albers 124 

and Newman 2019).   125 

b. Defining the spring transition  126 

Following the approach in Breeden et al. (2021), we use the leading empirical orthogonal 127 

function (EOF1) and corresponding principal component (PC1) of 200-hPa zonal wind over the 128 

north Pacific domain (Fig. 1) to track the seasonality of the north Pacific jet. PC1 is positive 129 

during late winter and early spring, decreases throughout the spring transition, and becomes 130 

negative sometime in May or June. The substantial spread in PC1 early in the spring transition 131 

reflects the high variability in the jet and storm track at this time of year, and the limitation of 132 

using a single calendar date to define ‘spring’. Therefore, we instead use each year’s transition 133 

date when PC1 first falls below +0.6V to define the start of the spring phase. Similarly, when 134 

PC1 first falls below -0.6V is used to define the beginning of the summer phase. The +/- 0.6V 135 

threshold was chosen to have a roughly even number of samples in the three phases (N = 4986 136 

days in winter, 4055 days in spring and 4103 days in summer).  137 

c. Linear Inverse Model  138 

The LIM is based on the assumption that the dynamical evolution of the variables in the 139 

state vector 𝐱 (Eqn 1) can be reasonably approximated as a linear system forced by stochastic 140 

white noise (Eqn 2): 141 

 142 

𝐱 = {OLR, Ψ200, Ψ 0,  2mT}  {1} 143 

 144 
x
𝑡

  =   Lx  +   Fs    {2} . 145 

 146 
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Eqn 2 approximates the evolution of 𝐱 by assuming that a timescale separation exists between 147 

the predictable, slowly-evolving dynamics represented by L and the fast, rapidly decorrelating 148 

and therefore unpredictable variations represented by Fs. Here, as in previous studies (Winkler et 149 

al. 2001; Newman et al. 2003; Albers and Newman 2019; Henderson et al. 2020; Breeden et al. 150 

2020), slowly-evolving refers to weekly-varying anomalies (consistent with the 7-day running 151 

mean applied to the anomalies in 𝐱), and fast refers to shorter synoptic and mesoscale variations. 152 

L can be determined from the time-averaged ℂ𝟎 and lagged covariance ℂW  statistics of the state 153 

vector (Eqn 3):  154 

𝐋 = 𝒍𝒐𝒈𝒎(ℂW ∗ 𝒊𝒏𝒗(ℂ𝟎))/W   {3} .  155 

 156 

To reduce dimensionality, 𝐱 is constructed from the principal components (PCs) resulting 157 

from empirical orthogonal function (EOF) analysis of each variable in the state vector, where 158 

enough PCs are retained to capture a majority of variance of each variable, while retaining a 159 

stable model (Table S1). A range of retained PCs was tested, and results are not sensitive to the 160 

exact number of PCs retained in 𝐱 (not shown). Here a training lag W  of 5 days is used, 161 

consistent with prior studies (Winkler et al. 2001; Breeden et al. 2020). Note that the matrix L, 162 

often referred to as the ‘dynamic operator’, acts linearly on 𝐱 but can include both linear 163 

relationships and linear approximations to nonlinearities, that may be included in ℂ𝟎 and ℂW . 164 

This is in contrast to, for instance, a model based upon linearized equations of motion.  165 

1) LIM Hindcasts 166 

Given initial conditions x(0), an infinite-member ensemble forecast for any lead time, 𝜏, 167 

can be generated using 𝐋 by solving the homogeneous component of Eqn 2:  168 

 169 

𝐱(𝜏) = 𝐱(0) exp(𝐋𝜏) = 𝐱(0)𝐆(𝜏)  {4} . 170 

 171 

Cross-validated hindcasts are created by removing 10% of the data, recomputing L and creating 172 

forecasts using the portion of removed data as initial conditions (ICs). To evaluate the LIM 173 

hindcast skill, hindcasts are verified against the un-truncated, observed (i.e., reanalysis) 174 

anomalies using the anomaly correlation coefficient (ACC) at each grid point (e.g., Newman et 175 

al. 2003).  176 
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Theoretical expected forecast skill is computed, and compared to actual forecast skill, for 177 

the three phases of the spring transition using the anomaly correlation version of the LIM signal-178 

to-noise ratio S at each gridpoint, ii (Sardeshmukh et al. 2000; Newman et al. 2003):  179 

 180 

𝑆2(𝜏, 𝑖) =  (𝜏)
(𝜏) ,    {5} 181 

 182 

𝑭(𝜏) =< 𝒙(𝑡 + 𝜏)𝒙(𝑡 + 𝜏)′ >   {6}  183 

 184 

𝑬(𝜏) =  ℂ𝟎 − 𝐆(τ)ℂ𝟎𝐆(τ)′  {7},  185 

 186 

where 𝑭(𝜏) is the forecast signal covariance matrix determined at a given lead time, indicating 187 

the strength of the predictable signal in the forecasts. 𝑬(𝜏) is the forecast error covariance matrix 188 

and represents lead-dependent, unpredictable ‘noise’. 𝑆2 is, in turn, used to calculate expected 189 

skill of a perfect infinite member ensemble forecast:  190 

 191 

𝜌 (𝜏) =  𝑆2(𝜏)
{[𝑆2(𝜏)+1]𝑆2(𝜏)}.   {8} .  192 

 193 

Both 𝜌 (𝜏) and the components of 𝑆2, that is, the signal and the noise, will be considered during 194 

the three jet phases and used to explain the observed and theoretical evolution of subseasonal 195 

2mT skill.  196 

2) Forecasts of Opportunity 197 

Our approach to identifying forecasts of opportunity will focus on the signal component 198 

of signal-to-noise by anticipating periods of rapid, potentially predictable 2mT growth. The LIM 199 

is based on the concept that subseasonal anomaly growth can be modeled through the 200 

constructive interference of evolving nonorthogonal modes in the system that all have distinct 201 

spatial and temporal characteristics (Farrell 1988; Lacarra and Talagrand 1988; Farrell and 202 

Ioannou 1996). If the eigenmodes of L are nonorthogonal, then transient anomaly growth may 203 

occur via the constructive interference of the eigenmodes over a finite period of time (because 204 

{2} is asymptotically stable, the eigenvalues of L are all negative and the individual eigenmodes 205 

all decay in finite time). Physically, the nonorthogonality of L can arise from the presence of 206 
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asymmetric interactions in the system and patterns of variability that involve multiple physical 207 

processes evolving on different timescales (e.g., the NAO, Albers and Newman 2021a). 208 

Particularly relevant here are asymmetries introduced by shear and zonal asymmetry in the mean 209 

state (Farrell 1982; Boyd 1983), as observed in the North Pacific jet exit region (Mak and Cai 210 

1989; Breeden and Martin 2018). The most rapidly growing patterns that amplify via transient 211 

growth can be determined using the eigendecomposition of system growth (Eqn 9; Penland and 212 

Sardeshmukh 1995, Newman et al. 2003). System growth 𝜇(𝜏) can be constrained to occur under 213 

a particular initial or final state, which can be set using the initial and final ‘norm’ kernels D and 214 

N, respectively: 215 

𝜇(𝜏) = (𝜏) (𝜏)
(0) (0)

= (0) (𝜏) (𝜏) (0)
(0) (0)

 {9} 216 

𝐆(τ)T𝐍𝐆(τ) =  μ(τ)𝐯(τ)    {10}  217 

The corresponding eigenvalues μ(τ) determined from Eqn 10 represent the system growth rate 218 

associated with the evolution of the corresponding initial patterns contained in the eigenvectors 219 

𝐯(τ). The eigenmodes can be sorted from highest to lowest growth rate using the eigenvalues, 220 

and those with the strongest growth might be expected to be the most predictable. Growth is 221 

maximized for a prescribed period of 𝜏 days and without any constraint on the initial pattern, for 222 

which D is set to the identity matrix, as done in past studies (e.g., Sardeshmukh et al. 1997; 223 

Newman et al. 2003). Commonly used norms include the L2 or ‘energy’ norm, in which N is 224 

also set to the identity matrix. For this study, our final norm N maximizes North American 2mT 225 

anomaly growth, which is specified by beginning with the identity matrix and setting the 226 

diagonals corresponding to the OLR, Ψ200, Ψ 0 PCs to zero, so that only 2mT amplitude is 227 

constrained to amplify. The resultant ‘optimal patterns’ (OPs) we describe in Section 3 are 228 

interpreted as the first and second patterns most conducive to 2mT growth, and will be referred 229 

to as OP1 and OP2, respectively. For each phase, we will examine the OP1 and OP2 maximizing 230 

2mT growth over a 14-day period, as this is near peak amplification (not shown) but approaches 231 

subseasonal timescales (e.g., Breeden et al. 2020).  232 

We identify forecasts of opportunity using the optimal initial conditions, determined from 233 

the eigenvectors of Eqn 10, that maximize 2mT growth of either OP1 or OP2. Specifically, we 234 

assume that forecasts initialized when the initial atmospheric state strongly resembles one of the 235 
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optimal initial conditions associated with either OP1 and OP2 will be followed by periods of 236 

elevated forecast skill. The hypothesized correspondence between strong projections onto the 237 

optimal initial conditions, and higher ACC, will be tested for the three phases of the spring 238 

transition using OP1 and OP2 for each phase, and the corresponding optimal initial conditions 239 

OP1-IC and OP2-IC. To identify forecasts of opportunity, we use the OP-Ics corresponding to a 240 

𝜏 at the midpoint of the forecast lead time, for example, for week 3-4 forecasts (days 15-28), we 241 

determine OP-IC using a lead time 𝜏 = 21 days. However, the structure of the ICs for the range 242 

of lead times considered (7-35 days) does not differ substantially (not shown), meaning that at 243 

this range of lead times, growth is arising from the same optimal pattern and its evolution. The 244 

20% of dates with the strongest projection – positive or negative – onto a given OP-IC is selected 245 

as forecasts of opportunity, corresponding to 997 dates in winter, 811 in spring, and 820 in 246 

summer. The statistical significance of skill changes for each subset of forecasts is determined 247 

via bootstrapping, where the two groups of forecasts are resampled at the smaller sample size of 248 

the two groups, after it is reduced by five to account for autocorrelation in the 2mT field, which 249 

reduces the number of truly independent samples. Five is chosen because for 2mT, five days is 250 

the lag at which autocorrelation drops below 0.5 over North America. ACC is then recomputed 251 

for that sub-sample, and the process repeated 5000 times to establish confidence intervals for 252 

ACC at each gridpoint.  253 

3. Results  254 

The three phases of the spring transition of the north Pacific jet show its seasonal 255 

evolution from the strong, wintertime jet to a weaker, split jet during spring, and finally, a very 256 

weak summer jet structure (Fig. 1). The onset of the spring phase coincides with an invigoration 257 

and northward shift of the north Pacific storm track, which is followed by relatively quiescent 258 

storm track conditions during summer (Breeden et al. 2021). The winter-to-spring transition is 259 

highly variable but typically occurs in late March or April, while the spring-to-summer transition 260 

is less variable and generally occurs in late May (Fig. 1d). In Section 3a, we compare the OP1 261 

and OP2 patterns during each jet phase, revealing the patterns are all notably different. Section 262 

3b examines the corresponding evolution of LIM 2mT hindcast skill, and evaluates the success 263 

in using OP1-IC and OP2-IC to identify forecasts of opportunity. To better understand the 264 

observed forecast skill evolution, Section 3c considers theoretical expected skill and the seasonal 265 

evolution of the signal (Eqn 6) and the noise (Eqn 7).  266 
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 267 

Fig. 1: Panel a) shows composite 200-hPa zonal wind (units m s-1) based on periods when a) pc1 268 
> 0.6V, the ‘winter phase’, b) +/- 0.6V, the ‘spring phase’, and c) < -0.6V, the ‘summer phase’. 269 
The thin lines in panel d) show PC1 for each year in the 60-year JRA55 record, starting on 1 270 
February through 27 June, and the thick black line is the 60-year mean.  271 
 272 

a. Optimal 2-meter temperature structures  273 

Under the constraint to maximize North American 2mT anomaly growth (Eqn 10), each 274 

phase of the jet is associated with different heating and circulation structures (Figs. 2-4). Note 275 

that because of the linearity of the LIM, equal and opposite patterns (e.g., warm anomalies 276 

instead of cold anomalies in Fig. 2b) correspond to equal and opposite signs of all variables.  277 
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 278 

Fig. 2: First (a-d) and second (e-h) optimal patterns (OP1, OP2) maximizing North American 2-279 
meter temperature growth, over a 14-day period, during the winter jet phase. The color shading 280 
in a), b), e), f) is anomalous 2mT in units degrees Celsius, and the black contours are 200-hPa 281 
streamfunction anomalies (positive in solid, negative in dashed). The contour interval for 282 
streamfunction is +/- 5*106 kg m2 s-1 contoured at intervals of 5*106. The color shading in c), d), 283 
g), h) is anomalous OLR in units W m-2.  284 

 285 

During the winter phase (Fig. 2), OP1-IC involves an upper-level ridge in the east Pacific 286 

and negligible 2mT anomalies; 14 days later, widespread cold anomalies develop in conjunction 287 

with a blocking anticyclone upstream over the central Pacific. Meanwhile, positive OLR 288 

anomalies (representing suppressed convection) are located over the eastern Indian ocean and 289 

central Pacific at Day 0, with the former propagating eastward with time and the latter remaining 290 

stationary (Fig. S1a-c). Much of the evolution resembles that of North Pacific blocking, whose 291 

subseasonal evolution can be well-produced by a LIM (Breeden et al. 2020). OP2 is associated 292 

with a couplet of temperature anomalies with centers over Alaska and the central U.S (Fig. 2f) 293 

and a dipole of stationary OLR anomalies in the Pacific basin that decay with time (Fig. 2g-h; 294 

Fig. S2a-c).   295 
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296 

Fig. 3: As in Fig. 2 but for the first and second spring optimal growth structures.  297 

During the spring jet phase (Fig. 3), the 2mT and Ψ200 final evolved anomalies resemble 298 

the OP1 structures in winter (cf., Figs. 2b to 3b and 2f to 3f), but with overall weaker and 299 

northward-shifted temperature anomalies – coincident with the northward shift of the jet – and 300 

the development of weak warm anomalies over the southwestern United States. Interestingly, the 301 

optimal initial conditions differ substantially. For example, the winter phase OP1 optimal initial 302 

condition resembles the Pacific-North American pattern, while the spring phase OP1 optimal 303 

initial condition is weaker, more zonal, and located further equatorward. The OLR evolution 304 

between the winter and spring phases differs as well, most notably a lack of stationary OLR 305 

anomalies in the central Pacific during spring (Fig. 3c-d; Fig. S1d-f). This lack of persistent, 306 

ENSO-like convection is consistent with the frequently observed decay of ENSO events during 307 

spring, meaning the associated teleconnection likely weakens at this time of year. While a 308 

propagating OLR feature is observed in the Indian ocean during spring, it is located farther to the 309 

west than what develops in winter, further reflecting changes in the optimal heating conditions 310 
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for 2mT growth from winter to spring. OP2 during spring also resembles OP2 in winter, 311 

although again with differences in the amplitude and precise location of the temperature and 312 

Ψ200 anomalies.  313 

314 
Fig. 4: As in Fig. 2 but for the first and second summer optimal growth structures.  315 
 316 

The OPs that evolve in summer differ substantially from those in winter and spring (Fig. 317 

4). In summer, OP1 involves cyclonic Ψ200 anomalies over the central Pacific, North America 318 

and North Atlantic that develop along with cold temperature anomalies over central North 319 

America (Fig. 4a-b). Positive OLR anomalies form over the Maritime Continent and are mainly 320 

stationary, persisting from initialization to past 40 days (Fig. 4c-b; Fig S1 g-i). While there is 321 

some consistency between cold temperatures and suppressed convection in the Indian Ocean and 322 

Maritime continent between all three phases’ OP1 patterns, the circulation response at 200-hPa 323 

differs substantially in summer, suggesting the nature of the summer teleconnection differs from 324 

winter and spring, as found in Newman et al. (2003) for winter and summer. Finally, OP2 in 325 

summer involves development of a small-scale, zonally-oriented wave train over the central 326 

Pacific and North America, while tropical OLR involves a persistent negative anomaly centered 327 



 14 

at 25qE (Fig. 4e-h). This circulation pattern strongly resembles the wave train that has recently 328 

been linked to surface moisture deficits over the Ohio river valley region during spring (Jong et 329 

al. 2022), which are influenced by vertical motions driven by the wave train. Overall, from 330 

winter to summer, the OP-ICs progressively shrink in zonal wavelength, consistent with the 331 

monthly evolution of North American height sensitivities to remote tropical heating found by 332 

Newman and Sardeshmukh (1998).  333 

b. 2-meter temperature Skill Evolution 334 

Subseasonal temperature skill evolves during the three phases of the spring transition, but 335 

in all phases, periods of elevated forecast skill are identifiable ahead of time using OP1-IC and 336 

OP2-IC. On average, week 3-6 2-meter temperature skill from LIM forecasts is low (Figs. 5-6), 337 

but similar to dynamical forecast models (Pegion et al. 2019; Wang and Robertson 2018). We 338 

find that temperature skill is greatest during winter, reaching a spatial minimum in spring before 339 

increasing again in summer (Fig 5a-c).  340 

 341 

Fig. 5: Anomaly correlation coefficient (ACC) for weeks 3-4 temperature forecasts. The left 342 
column shows ACC using all forecasts during a) winter, b) spring and c) summer. The middle 343 
column shows ACC for the 20% of forecasts with the strongest projection onto the optimal initial 344 
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conditions associated with OP1, and the right column shows ACC for the 20% of forecasts with 345 
the strongest projection onto the optimal initial conditions associated with OP2. Stippling on 346 
panels d) – i) indicates where skill changes are significant at the 95% confidence level. 347 
 348 

Nonetheless, even during the spring minimum, some skill is present in western North America 349 

from Alaska to Mexico (Fig. 5b). More encouraging, however, is that in all three phases, skill 350 

increases markedly for the forecasts initialized during the 20% of dates with the strongest 351 

projection – positive or negative – onto OP1-IC (Fig 5d-f). Skill is significantly different from 352 

the skill of the remaining 80% of forecasts during winter and summer, but not spring. Similarly, 353 

skill increases following strong projections onto OP2-IC, albeit over a smaller area during spring 354 

compared to winter and summer (Fig. 5g-i). The regions of highest skill generally coincide with 355 

the areas of strong OP growth, further supporting the idea that predictable anomaly growth is 356 

associated with the enhanced skill (c.f., Fig. 2b, 5d; Fig 4b, Fig. 5g). However, in spring, even 357 

for OP1 the spatial extent of ACC is confined to western North America, suggesting something 358 

is preventing strong optimal 2mT growth at this time.  359 

 360 

Fig. 6: As in Fig. 5 but for weeks 5-6 forecasts.  361 
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For weeks 5-6 forecasts, skill is lower than weeks 3-4 (Fig. 6a-c), yet there are still regions with 362 

reasonably high skill (correlations between 0.4-0.6), particularly during summer for OP1 (Fig. 363 

6f). Furthermore, spring skill is similar at weeks 5-6 and is statistically significantly different for 364 

OP1 and 2 in some areas, though these are still spatially confined to coastal areas where it is 365 

possible high-frequency fluctuations are weaker due to the nearby water, enhancing the impact of 366 

the predictable signal (Fig. 6e, h).  367 

It thus appears that the predictable temperature patterns, and their optimal initial 368 

conditions, are indeed associated with an increase in the predictable ‘signal’ in subseasonal 369 

forecasts, leading to an increase in skill. There are notable differences in when and where skill 370 

maximizes (Figs 5-6) during each of the three jet phases, but western North America is broadly 371 

the region with the most consistent skill. The spring phase displays the lowest overall skill and 372 

the weakest skill increase associated with forecasts of opportunity using OP1 and OP2, 373 

consistent with prior studies that have found a reduction in subseasonal forecast skill over the 374 

Pacific-North American region in spring (Wang and Robertson 2018; Albers et al. 2021).  375 

c. Expected Skill 376 

Does the spring skill minimum reflect a change in predictable signal, unpredictable noise, 377 

or some combination of both? To address this question, we consider the theoretical expected 378 

skill, 𝜌  (Eqn 8), for the three jet phases using the 21-day forecast signal-to-noise ratio (Fig. 7).  379 

The 𝜌  evolution and spatial characteristics are quite similar to the observed ACC (Fig. 5a-c), 380 

though 𝜌  is higher in all phases, as actual skill may be lower due to model imperfections or 381 

initial condition errors (Newman et al. 2003). During the winter phase, both the signal and noise 382 

components have the greatest amplitude, with the signal extending farther southwestward and 383 

accounting for the skill maximum located at more southern latitudes (Fig. 7a,d,g). In spring, 384 

there is a minimum in 𝜌  over most of North America, except in the far northern regions 385 

including Alaska, where the observed spring skill is also highest (c.f., Fig. 7b, Fig. 5b). The 386 

signal component reaches its minimum amplitude at this time, while noise has diminished as 387 

well but to a lesser extent, overall reducing 𝜌  in spring compared to winter and summer.  388 
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 389 

Fig. 7: Panels a) – c) show expected skill (units ACC; Eqn 8) calculated for the three phases of 390 
the spring transition. Panels d) – f) show the forecast signal covariance component of expected 391 
skill (F, Eqn 6) and panels g) – i) show the error covariance component of expected skill (E, Eqn 392 
7). Units for F and E are K2.  393 
 394 

The relatively elevated noise in spring in the interior of the continent could account for the lack 395 

of ACC increase during forecasts of opportunity associated with OP1 and OP2 (Fig 5e,h, 6e,h,). 396 

In the summer phase, signal increases in the central US compared to spring, while noise 397 

continues to weaken, driving up the signal-to-noise ratio (S2) and 𝜌  to peak values in the 398 

interior continent (Fig. 7c). As such, it appears the observed skill minimum in spring is 399 

consistent with theoretical expected skill and the evolution of predictable signal and 400 

unpredictable noise components of the forecasts. It is notable that the signal and noise reach their 401 

minimum amplitudes at different times of the year, though the underlying mechanism for their 402 

different temporal evolutions is not well understood at present. 403 

4. Discussion and Conclusions  404 

In this study, we document predictable North American 2mT patterns, their evolution 405 

during three phases of the seasonal cycle, and test the hypothesis that they can be used to 406 
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anticipate subseasonal forecasts of opportunity. We find that notably different patterns of upper-407 

level circulation and tropical OLR maximize 2mT growth during the winter, spring and summer 408 

phases of the north Pacific jet. Some patterns are familiar, or contain familiar elements, such as 409 

OP1 in winter and the PNA pattern. The associated tropical heating evolution maximizing 2mT 410 

growth differs in each phase as well, but overall reveals a role for stationary and propagating 411 

heating anomalies in the Indian Ocean, Maritime Continent and central Pacific. As such, ENSO, 412 

the MJO, and perhaps the Indian summer monsoon, may all be influencing subseasonal 2mT 413 

amplification, though further analysis is needed to confirm these potential links.  414 

In all three phases, we are able to leverage knowledge of these predictable patterns to 415 

anticipate, at the time of forecast initialization, forecasts of opportunity for 2mT, with the most 416 

success in winter and summer. Skill reaches a minimum in spring, and over much of North 417 

America, skill remains low, even during forecasts of opportunity. A spring skill minimum is also 418 

evident in theoretical expected skill, indicating a reduced signal-to-noise ratio during spring that 419 

obscures predictable anomaly growth and renders subseasonal spring forecasts generally less 420 

skillful than those initialized during winter and summer. 421 

Our results are consistent with the minimum in weeks 3-4 2mT skill found over CONUS 422 

in March – May (MAM) in the NCEP model by Wang and Robertson (2018). The same study 423 

showed the IFS showed a minimum in skill during MAM as well, but only over portions of 424 

North America, most notably the central and eastern United States. However, we note that since 425 

March includes at least a portion of the winter phase of the jet during most years (Fig. 1), a 426 

comparison to MAM skill and the spring skill evaluated in this study may not be the most direct. 427 

The spring minimum found in this study is also consistent with the skill reduction in the IFS 428 

subseasonal north Pacific jet forecasts during April and May, compared to March, that is shown 429 

by Albers et al. (2021), suggesting the spring minimum in skill is not limited to the LIM 430 

framework, but likely reflects a true limitation to subseasonal predictability in the PNA region.  431 

The OPs that develop during spring are associated with a propagating heating anomaly, 432 

potentially suggesting the MJO is important for spring forecasts of opportunity. Conversely, 433 

predictable winter and summer 2mT patterns are associated with stationary and persistent 434 

tropical convective heating anomalies, though they differ in heating location and the associated 435 

circulation and 2mT structures. Such a heating source could be a key element to their enhanced 436 

subseasonal 2mT skill, particularly during forecasts of opportunity (Mayer and Barnes 2021). 437 
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Furthermore, the wintertime stratospheric polar vortex could contribute to the elevated winter 438 

signal observed in Figure 7, given its known influence on the circulation (Albers and Newman 439 

2021a) and surface temperature (Butler et al. 2019a,b; Domeisen et al. 2020). To dynamically 440 

isolate these remote influences from tropical heating and the stratosphere, future work could 441 

employ the decoupling approach of Albers and Newman (2021) to reexamine subseasonal 2mT 442 

forecast skill and forecasts of opportunity. 443 

Despite the presence of stationary tropical heating in both phases, the OPs that develop in 444 

winter and summer differ markedly, including their spatial structure, with winter OPs producing 445 

larger-scale waves than summer OPs. Still, both are associated with periods of elevated forecast 446 

skill, suggesting smaller-scale patterns aren’t necessarily less predictable than large-scale 447 

patterns. Summer also benefits from the lowest noise amplitude of the three phases, so while the 448 

overall amplitude of the signal in summer is far weaker than in winter, the patterns are still 449 

predictable, as supported by the success of the forecasts of opportunity in summer (Figs. 5-6).  450 

Changes in remote SST and stratospheric forcing are not the only potential underlying 451 

reasons for the spring minimum in skill. For example, Breeden et al. (2021) found an invigorated 452 

storm track during spring, which could mean that synoptic variability – approximated with the 453 

noise forcing term in Eqn 2 – is too high to realize the signal associated with OP1 or OP2, as 454 

suggested in Figure 7. Alternatively, variables crucial for spring prediction could be missing 455 

from the state vector, although to have a big impact on model performance they would have to 456 

contain relevant information that is not implicitly captured in the original variables. Still, we note 457 

that the LIMs developed here are relatively simple, and the influence of additional variables can 458 

be easily tested. Finally, the LIMs are constructed using the fluctuation-dissipation relationship, 459 

assuming that the covariance of the system is constant with time (Penland and Sardeshmukh 460 

1995). It is possible that, even defining spring on a flow-dependent basis as done in this study, 461 

that the mean state and variance are changing too rapidly during the transition season to be 462 

modeled effectively by the LIM under this assumption. Future work will consider how forecast 463 

skill compares between dynamical subseasonal models and LIMs, to better discern which of 464 

these factors most strongly impacts subseasonal skill.  465 
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